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Motivación

• RSA, Aggarwal & Maurer en 2009 prueban que  romperlo en general es lo 
mismo que factorizar. (768 bits)


• Peter Shor en 1994 encuentra un algoritmo cuántico que permite factorizar en 
tiempos polinomiales números primos. 


• Mayo 2013 Thermally assisted quantum annealing of a 16-qubit problem 
Nature Communications 4, 1903–1909


• Junio 2013 Experimental Quantum Computing to Solve Systems of Linear 
Equations. Phys. Rev. Lett. 110, 230501 (2013)
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Encriptación Caótica

!

• Caos Determinista

A Deterministic Chaotic System

• Deterministic system is defined by a IFS  f(x)

• Input is initial condition x0 and parameter r

• Output is a sequence of states: x1 ,  x2 ,  x3 , … where  
xi +1 = f (xi ,  r) 

initial
condition x0

time series
x1, x2, …

parameter
r

iteration
function f

�4



�5



Caso Cuántico



Cifrado hecho en un computador cuántico

•    
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Enredo (Entanglement)

!

!

!

!

!

• No se entiende porque ocurre el enredo y varios opinan que pueda dar en 
sistemas clásicos.

�8



  

Schroedinger cat,
mixed by decoherence.

spiky, but mixed cat,
after parity measurement.

El gato



  

The original state:

Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum 
cryptography. Reviews of modern physics, 74(1), 145-195.



Propuesta

•    

108 CHAPTER 4. WORLD OF SOLITONS

(4.11)

(4.12)

besides the linear one. General mathematical approaches, such as the Lie group method,
to finding similarity variables are beyond the scope of this text. A systematic coverage
is given, for example, in Bluman and Cole ([BC74]). Here, we will be content to give
a physical example for which a similarity solution can be obtained by introducing a
different similarity variable than that used in obtaining solitary waves.

With C the (scaled) liquid concentration, consider the following model equation
introduced by Buckmaster ([Buc77]) to model the spreading of a thin liquid film on a
flat, horizontal, surface under the action of gravity:

ac == (03 ac) . (4.10)
at ax ax

A similarity variable z == x/t l / 5 is introduced and a solution assumed of the form

f (x/t l / 5 ) _ f(z)
C(x, t) = t l / 5 = t l / 5 .

Substituting (4.11) into the nonlinear PDE (4.10) yields

(f3 df) + z df + f = 0,
dz dz 5 dz 5

or 5:Z + :z (zf) =0.

Integrating, and setting the arbitrary constant equal to zero, yields

3 df
5f dz + z f == O.

(4.13)

(4.14)

(4.16)
Ixl :::; t l / 5 )130 A,

Ixl > t l / 5 -A3 ·

t l / 5

0,

C(x, t) ==

Finally, separating variables and integrating, we obtain

f= (A- 20Z2)1/3, (4.15)

with A the integration constant. Since the concentration must be greater than or equal
to zero, the above form is only valid for Izi == Ix/tl / 51 :::; V10A/3. The concentration
outside this region can be taken to be zero, since C == 0 satisfies the original PDE. Thus,
the complete solution for t > 0 is

(
3 x 2 ) 1/3

A - 10 t2 / 5

Taking, for example, A == 1, Figure 4.7 shows the evolution of the concentration
over the time range t == 1 to t == 1500 (scaled) time units. The similarity solution
captures the more important experimentally observed features of the spreading of thin
liquid films, namely, the sharp boundary between zero and nonzero concentrations and
the finite speed with which the boundary propagates.

108 CHAPTER 4. WORLD OF SOLITONS

(4.11)

(4.12)

besides the linear one. General mathematical approaches, such as the Lie group method,
to finding similarity variables are beyond the scope of this text. A systematic coverage
is given, for example, in Bluman and Cole ([BC74]). Here, we will be content to give
a physical example for which a similarity solution can be obtained by introducing a
different similarity variable than that used in obtaining solitary waves.

With C the (scaled) liquid concentration, consider the following model equation
introduced by Buckmaster ([Buc77]) to model the spreading of a thin liquid film on a
flat, horizontal, surface under the action of gravity:

ac == (03 ac) . (4.10)
at ax ax

A similarity variable z == x/t l / 5 is introduced and a solution assumed of the form

f (x/t l / 5 ) _ f(z)
C(x, t) = t l / 5 = t l / 5 .

Substituting (4.11) into the nonlinear PDE (4.10) yields

(f3 df) + z df + f = 0,
dz dz 5 dz 5

or 5:Z + :z (zf) =0.

Integrating, and setting the arbitrary constant equal to zero, yields

3 df
5f dz + z f == O.

(4.13)

(4.14)

(4.16)
Ixl :::; t l / 5 )130 A,

Ixl > t l / 5 -A3 ·

t l / 5

0,

C(x, t) ==

Finally, separating variables and integrating, we obtain

f= (A- 20Z2)1/3, (4.15)

with A the integration constant. Since the concentration must be greater than or equal
to zero, the above form is only valid for Izi == Ix/tl / 51 :::; V10A/3. The concentration
outside this region can be taken to be zero, since C == 0 satisfies the original PDE. Thus,
the complete solution for t > 0 is

(
3 x 2 ) 1/3

A - 10 t2 / 5

Taking, for example, A == 1, Figure 4.7 shows the evolution of the concentration
over the time range t == 1 to t == 1500 (scaled) time units. The similarity solution
captures the more important experimentally observed features of the spreading of thin
liquid films, namely, the sharp boundary between zero and nonzero concentrations and
the finite speed with which the boundary propagates.

�11



!

!

!

!

Theoretical Computer Science 265 (2001) 79–108
www.elsevier.com/locate/tcs

A physicist’s approach to number partitioning
Stephan Mertens ∗

Institut f!ur Theoretische Physik, Otto-von-Guericke-Universit!at, 39106 Magdeburg, Germany

Abstract

The statistical physics approach to the number partioning problem, a classical NP-hard prob-
lem, is both simple and rewarding. Very basic notions and methods from statistical mechanics
are enough to obtain analytical results for the phase boundary that separates the “easy-to-solve”
from the “hard-to-solve” phase of the NPP as well as for the probability distributions of the
optimal and sub-optimal solutions. In addition, it can be shown that solving a number partioning
problem of size N to some extent corresponds to locating the minimum in an unsorted list of
O(2N ) numbers. Considering this correspondence it is not surprising that known heuristics for the
partitioning problem are not signi!cantly better than simple random search. c⃝ 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Number partitioning; Phase transition; NP-complete; Heuristic algorithms; Statistical
mechanics; Random cost problem

1. Introduction

Recent years have witnessed an increasing interaction among the disciplines of dis-
crete mathematics, computer science, and statistical physics. These !elds are linked by
the fact that models from statistical physics can be formalized as combinatorial opti-
mization problems and vice versa [28, 31]. The connection between optimization and
statistical physics has lead to practical algorithms like simulated annealing [19] and to
new theoretical results, some of which can be found in this special issue.
In most cases, where a statistical physics analysis of an optimization or decision

problem yields signi!cant new results, this analysis is rather complicated technically
as well as conceptionally. This complexity may easily deter computer science people
from learning the tricks and tools, even if they value the results. To promote interdisci-
plinarity beyond the mutual appreciation of results, it may help to consider a physicists
approach to an optimization problem, which on the one hand requires only very basic

∗ http:==itp.nat.uni-magdeburg.de= ∼mertens.
E-mail address: stephan.mertens@physik.uni-magdeburg.de (S. Mertens).

0304-3975/01/$ - see front matter c⃝ 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00153 -0
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El trabajo

!

• Existe un sistema clásico que presente un fenómeno 
similar al del enredo cuántico que sea útil para hacer 
cifrados resistentes al ataque cuántico. 
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the basis of the last L0 ! L iterations decide whether it is
nearer the 0-attractor or the 1-attractor.

Since FR"#$; GR"#$, and, of course, m"n$ are private,
the state of the transmitter system t"n$ is not known to an
unauthorized receiver, and the job of the code breaker is
to estimate those quantities. The goal of the transmitter is
to assure that the computational effort in making such an
estimation is extremely difficult. As in all public key
encryption schemes, the advantage of the authorized re-
ceiver over an unauthorized receiver is computational, not
information theoretic.

The essential idea is that the receiver has full knowl-
edge of the dynamics and therefore knows the state space
locations of the attractors corresponding to the binary
values of the modulation variable m"n$. Unauthorized re-
cipients know only the transmitter part of the full dy-
namics, and the protocol of communication is chosen in
such a way that the attractor cannot be reconstructed
based on the transmitted signals alone. The attractor
can take the form of a limit cycle, a high-dimensional
hypersurface, or a chaotic attractor. The nonlinear dy-
namical system is continuous in the state space and can
be either continuous or discrete in time. The public key
encryption scheme discussed here is discrete in time and
the coupling signals are scalars; however, the concept can
be extended to continuous time dynamical systems and
systems with multidimensional coupling signals.

Neither an unauthorized nor an authorized receiver
knows the complete transmitter state t"n$, so each must
replace the ‘‘missing’’ state variables by the time-delay
embedding method [6] using the incoming signal from
the transmitter st. This is embodied in the vector
s"n$ % !st"n$; :::; st&n' "d' 1$(" with d chosen by vari-
ous known methods [6] in order to detect the attractor
in the reconstructed full phase space !r"n$; s"n$". At the
beginning of each transmitted bit, m"n$ % 0 or m"n$ % 1,
the state of the transmitter is set to a random value,
making the reconstruction of t"n$ by an unauthorized
receiver more difficult. The combined dynamical system
is iterated long enough to ensure that the system moves
from the random initial state to one of the two attractors
that correspond to the transmission of 0 or 1 as illustrated
in Fig. 1. The transmitted bit is decoded by the receiver by
choosing the attractor that is closer to the end points of
the trajectory. The authorized receiver reconstructs the
position of the attractor using the sequence st obtained
by simulating off-line the entire dynamical system (trans-
mitter ) receiver) before the actual transmission begins.
The same simulation is repeated twice: once for m % 0
and then for m % 1. Each will produce a collection of
points that represent each of the two attractors separately.
On the other hand, the sequence st generated during the
real transmission and available to an unauthorized re-
ceiver is of a single transient trajectory for only one of
the two possible values of m. The transmission is stopped
when the trajectory converges to the corresponding at-

tractor. The authorized receiver has the off-line simula-
tions with both values of m which cover the entire
attractors, so it can tell to which of the two attractors
the currently transmitted sequence has converged. But an
unauthorized receiver knows only that the end point of
the transmitted sequence lies on one of the two possible
attractors, but it cannot tell on which one.

We illustrate DDE using the dynamics of a coupled
map lattice. The receiver dynamics FR"#$; GR"#$ is given
by the map (i % 1; . . . ; DR)

ri"n) 1$ % ai;i'1r2i'1"n$ ) ai;ir2i "n$ ) ai;i)1r2i)1"n$
) bis2t "n$ ) ci; (2)

and the transmitter dynamics FT!t"n$; st; m" by
(j % 1; . . . ; DT)

tj"n) 1$ % dj;j'1t2j'1"n$ ) dj;jt2j "n$ ) dj;j)1t2j)1"n$
) ej;jjtj"n$j) fjs2r"n$ ) gj: (3)

The signal sent from the receiver to the transmitter is

sr"n$ %
X

DR

i%1

hir2i "n$; (4)

the signal sent from the transmitter to the receiver is

st"n$ % w
X

DT

j%1

jtj"n$j) Am"n$: (5)

We selected DT % 12, DR % 2 and chose parameters
such that the attractors are chaotic for both m % 0; 1.
During each transmission window we allowed the system
to converge to its attractor (Fig. 2) for L % 50 iterations.
The bit was decoded (either a 1 or a 0 was selected) using
the last L0 % 10 points on the trajectory (Fig. 1). All the
parameters and other details of our simulation may be
found in [7].

The decoding bit error rate (BER) encountered by the
authorized receiver, depends on the modulation parame-
ter A determining the separation between the 0 and

‘1’ attractor

Decision surface

Random initial state

Transient trajectory
‘0’ attractor

FIG. 1. A trajectory in the reconstructed embedding phase
space starts at a random initial state and converges to one of
two attractors that correspond to a transmitted ‘‘0’’ or ‘‘1.’’ The
trajectory shown here goes to the ‘‘1-attractor.’’
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of nonlinear dynamical systems. A high-dimensional dissipative nonlinear dynamical system is
distributed between transmitter and receiver, so we call the method distributed dynamics encryption
(DDE). The transmitter dynamics is public, and the receiver dynamics is hidden. A message is encoded
by modulation of parameters of the transmitter, and this results in a shift of the overall system attractor.
An unauthorized receiver does not know the hidden dynamics in the receiver and cannot decode the
message. We present an example of DDE using a coupled map lattice.
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During the last decade there has been a great interest in
developing secure communication schemes utilizing
chaos. Most of the proposed schemes are based on chaos
synchronization [1], controlling chaos [2], and chaotic
shift keying [3]. Also, chaos based block ciphers were
studied in [4]. In conventional cryptography, all encryp-
tion schemes are divided into symmetric and asymmetric
methods [5]. Symmetric methods require sharing of the
same key by both transmitter for message encryption and
receiver for message decryption. Asymmetric methods
have one ‘‘public’’ key known to all users for encoding
messages, but another ‘‘private’’ key for use by trusted
receivers for decoding the message. Decoding the mes-
sage using the public key which was used to encrypt the
message is made computationally unfeasible. Communi-
cations strategies that use asymmetric (or public key)
methods for encryption have much greater inherent se-
curity than symmetric methods since they eliminate the
problem of key management, which itself can pose the
most serious security risk. However, in the application of
ideas from nonlinear dynamics to secure communica-
tions, only the equivalent of symmetric encryption meth-
ods have been studied to date. It is of general interest then
to introduce asymmetric, public/private key techniques
into the discussion of communication using nonlinear
systems. All known asymmetric schemes are based on
the algorithmic complexity of certain inverse integer
number problems (factorization, knapsack, discrete loga-
rithms, etc.) [5]. They cannot be utilized directly in non-
linear dynamically based encryption schemes which use
real numbers and are implemented using analog compo-
nents. We propose the first method which uses a different
concept based on nonlinear dynamics for realizing asym-
metric ‘‘public key’’ secure communication. A general
strategy is introduced and then explored in detail within
a relatively simple example. The generality of the ap-
proach permits one to envision substantially more com-

plex implementations wherein the inherent security can
be strengthened as one wishes.

The basic idea of distributed dynamics encryption
(DDE) is to split a dynamical system of dimension DT !
DR into two parts with DT transmitter variables t"n# $
%t1"n#; . . . ; tDT

"n#&, and DR receiver variables r"n# $
%r1"n#; . . . ; rDR

"n#&. The receiver receives the scalar signal
st"n# from the transmitter, and the transmitter receives
the scalar signal sr"n# from the receiver. At each discrete
time n $ 1; 2; . . . , these satisfy

t"n! 1# $ FT!t"n#; sr"n#; m"n#";
r"n! 1# $ FR!r"n#; st"n#";

(1)

where st"n# $ GT!t"n#" and sr"n# $ GR!r"n#" are signals
transmitted from the transmitter to the receiver and back,
respectively. Here FT"'# is a DT dimensional vector field,
FR"'# is DR dimensional, GR"'# and GT"'# are scalars,
and m"n# is the message. Of these quantities FT"'# and
GT"'# are public, while m"n#;FR"'#, and GR"'# are pri-
vate. Both transmitted signals, sr and st, are public.

An authorized receiver knows all quantities, public
and private, and can establish off-line the allowed at-
tractors, or other dynamical aspects of the total system,
for all allowed values of m"n#. In the present illustra-
tion of DDE, we permit only m"n# $ 0, leading to
what we call the ‘‘0-attractor’’ and m"n# $ 1 yielding
the ‘‘1-attractor.’’ In windows of time of length L we fix
m"n# $ 0 or m"n# $ 1. The receiver must decide which of
these attractors is present in the total system, and on that
basis select whether a ‘‘0’’ or a ‘‘1’’ was transmitted.
Other modulation methods are possible with m"n# being
a richer waveform, but this simple binary scheme serves
to illustrate the method.

In any window of length L containing m"n# $ 0 or
m"n# $ 1 we iterate the dynamical system L times and on
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