El cifrado por medio de sistemas complejos en estados no lineales

Hugo Solís

Motivación

- RSA, Aggarwal \& Maurer en 2009 prueban que romperlo en general es lo mismo que factorizar. (768 bits)
- Peter Shor en 1994 encuentra un algoritmo cuántico que permite factorizar en tiempos polinomiales números primos.
- Mayo 2013 Thermally assisted quantum annealing of a 16-qubit problem Nature Communications 4, 1903-1909
- Junio 2013 Experimental Quantum Computing to Solve Systems of Linear Equations. Phys. Rev. Lett. 110, 230501 (2013)

Cifrado

Encriptación Caótica

- Caos Determinista

Caso Cuántico

Cifrado hecho en un computador cuántico

> -

Enredo (Entanglement)

- No se entiende porque ocurre el enredo y varios opinan que pueda dar en sistemas clásicos.

El gato

Gisin, N., Ribordy, G., Tittel, W., \& Zbinden, H. (2002). Quantum cryptography. Reviews of modern physics, 74(1), 145-195.

Propuesta

$$
\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left(C^{3} \frac{\partial C}{\partial x}\right)
$$

$C(x, t)= \begin{cases}\frac{\left(A-\frac{3}{10} \frac{x^{2}}{t^{2 / 5}}\right)^{1 / 3}}{t^{1 / 5}}, & |x| \leq t^{1 / 5} \sqrt{\frac{10}{3} A}, \\ 0, & |x|>t^{1 / 5} \sqrt{\frac{10}{3} A .}\end{cases}$

Theoretical Computer Science 265 (2001) 79-108
Theoretical

A physicist's approach to number partitioning
Stephan Mertens *
Institut für Theoretische Physik, Otto-von-Guericke-Universität, 39106 Magdeburg, Germany

El trabajo

- Existe un sistema clásico que presente un fenómeno similar al del enredo cuántico que sea útil para hacer cifrados resistentes al ataque cuántico.

Using Distributed Nonlinear Dynamics for Public Key Encryption

$$
\text { Roy Tenny, }{ }^{1,2} \text { Lev S. Tsimring, }{ }^{1} \text { Larry Larson, }{ }^{2} \text { and Henry D. I. Abarbanel }{ }^{1,3}
$$

${ }^{1}$ Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402
${ }^{2}$ Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0354 Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California,

San Diego, La Jolla, California 92093-0402
(Received 15 May 2002; published 28 January 2003)

$$
\begin{aligned}
\mathbf{t}(n+1) & =\mathbf{F}_{T}\left(\mathbf{t}(n), s_{r}(n), m(n)\right), \\
\mathbf{r}(n+1) & =\mathbf{F}_{R}\left(\mathbf{r}(n), s_{t}(n)\right),
\end{aligned}
$$

