

Hugo Solís

Motivación

- RSA, Aggarwal & Maurer en 2009 prueban que romperlo en general es lo mismo que factorizar. (768 bits)
- Peter Shor en 1994 encuentra un algoritmo cuántico que permite factorizar en tiempos polinomiales números primos.
- Mayo 2013 Thermally assisted quantum annealing of a 16-qubit problem Nature Communications 4, 1903–1909
- Junio 2013 Experimental Quantum Computing to Solve Systems of Linear Equations. Phys. Rev. Lett. 110, 230501 (2013)

Cifrado

Encriptación Caótica

Caos Determinista

Caso Cuántico

Cifrado hecho en un computador cuántico

Enredo (Entanglement)

 No se entiende porque ocurre el enredo y varios opinan que pueda dar en sistemas clásicos.

Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. *Reviews of modern physics*, *74*(1), 145-195.

Propuesta

•

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(C^3 \frac{\partial C}{\partial x} \right).$$

$$\overbrace{\text{Gas}}^{\text{Cool or compress}} \xrightarrow[\text{Heat or reduce pressure}]{} \overbrace{\text{Heat}}^{\text{Cool}} \xrightarrow[\text{Heat or reduce pressure}]{} \overbrace{\text{Heat}}^{\text{Cool}} \xrightarrow[\text{Cool}]{} \overbrace{\text{Heat}}^{\text{Cool}} \xrightarrow[\text{Heat or reduce pressure}]{} \overbrace{\text{Heat}}^{\text{Cool}} \xrightarrow[\text{Heat}]{} \overbrace{\text{Heat}} \xrightarrow[\text{Heat}]{} \overbrace{\text{Heat$$

$$C(x,t) = \begin{cases} \left(\frac{A - \frac{3}{10} \frac{x^2}{t^{2/5}} \right)^{1/3}}{t^{1/5}}, & |x| \le t^{1/5} \sqrt{\frac{10}{3}} A, \\ 0, & |x| > t^{1/5} \sqrt{\frac{10}{3}} A. \end{cases}$$

Theoretical Computer Science 265 (2001) 79-108

Computer Science

www.elsevier.com/locate/tcs

Theoretical

A physicist's approach to number partitioning

Stephan Mertens*

Institut für Theoretische Physik, Otto-von-Guericke-Universität, 39106 Magdeburg, Germany

El trabajo

 Existe un sistema clásico que presente un fenómeno similar al del enredo cuántico que sea útil para hacer cifrados resistentes al ataque cuántico.

Roy Tenny,^{1,2} Lev S. Tsimring,¹ Larry Larson,² and Henry D. I. Abarbanel^{1,3} ¹Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402 ²Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0354 ³Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California, San Diego, La Jolla, California 92093-0402 (Received 15 May 2002; published 28 January 2003)

VOLUME 90, NUMBER 4

 $\mathbf{t}(n+1) = \mathbf{F}_T(\mathbf{t}(n), s_r(n), m(n)),$ $\mathbf{r}(n+1) = \mathbf{F}_R(\mathbf{r}(n), s_t(n)),$

